Using Conditional Kernel Density Estimation for Wind Power Density Forecasting

نویسندگان

  • Jooyoung Jeon
  • James W. Taylor
چکیده

Of the various renewable energy resources, wind power is widely recognized as one of the most promising. The management of wind farms and electricity systems can benefit greatly from the availability of estimates of the probability distribution of wind power generation. However, most research has focused on point forecasting of wind power. In this paper, we develop an approach to producing density forecasts for the wind power generated at individual wind farms. Our interest is in intraday data and prediction from 1 to 72 hours ahead. We model wind power in terms of wind speed and wind direction. In this framework, there are two key uncertainties. First, there is the inherent uncertainty in wind speed and direction, and we model this using a bivariate VARMA-GARCH model, with a Student t distribution, in the Cartesian space of wind speed and direction. Second, there is the stochastic nature of the relationship of wind power to wind speed (described by the power curve), and to wind direction. We model this using conditional kernel density (CKD) estimation, which enables a nonparametric modeling of the conditional density of wind power. Using Monte Carlo simulation of the VARMA-GARCH model and CKD estimation, density forecasts of wind speed and direction are converted to wind power density forecasts. Our work is novel in several respects: previous wind power studies have not modeled a stochastic power curve; to accommodate time evolution in the power curve, we incorporate a time decay factor within the CKD method; and the CKD method is conditional on a density, rather than a single value. The new approach is evaluated using datasets from four Greek wind farms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic short-term wind power forecasting based on kernel density estimators

Short-term wind power forecasting tools have been developed for some time. The majority of such tools usually provide single-valued (spot) predictions. Such predictions are however often not adequate when the aim is decision-making under uncertainty. In that case there is a clear requirement by end-users to have additional information on the uncertainty of the predictions for performing efficie...

متن کامل

Time-adaptive Kernel Density Forecast: a New Method for Wind Power Uncertainty Modeling

This paper reports new contributions to the advancement of wind power uncertainty forecasting beyond the current state-of-the-art. A new kernel density forecast (KDF) method applied to the wind power problem is described. The method is based on the Nadaraya-Watson estimator, and a time-adaptive version of the algorithm is also proposed. Results are presented for different casestudies and compar...

متن کامل

A Multi-model Combination Approach for Probabilistic Wind Power Forecasting

 Abstract—Short-term probabilistic wind power forecasting can provide critical quantified uncertainty information of wind generation for power system operation and control. As the complicated characteristics of wind power prediction error, it would be difficult to develop a universal forecasting model dominating over other alternative models. Therefore, a novel multi-model combination (MMC) ap...

متن کامل

Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint

One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year...

متن کامل

A Stat istical Model for Wind Power Forecast Error Based on Kernel Den- sity Estimation

Wind power has been developed rapidly as a clean energy in recent years. The forecast error of wind power, however, makes it difficult to use wind power effectively. In some former statistical models, the forecast error was usually assumed to be a Gaussian distribution, which had proven to be unreliable after a statistical analysis. In this paper, a more suitable probability density function fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013